rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids

نویسندگان

  • Sergio Ruiz-Carmona
  • Daniel Alvarez-Garcia
  • Nicolas Foloppe
  • A. Beatriz Garmendia-Doval
  • Szilveszter Juhos
  • Peter Schmidtke
  • Xavier Barril
  • Roderick E. Hubbard
  • S. David Morley
چکیده

Identification of chemical compounds with specific biological activities is an important step in both chemical biology and drug discovery. When the structure of the intended target is available, one approach is to use molecular docking programs to assess the chemical complementarity of small molecules with the target; such calculations provide a qualitative measure of affinity that can be used in virtual screening (VS) to rank order a list of compounds according to their potential to be active. rDock is a molecular docking program developed at Vernalis for high-throughput VS (HTVS) applications. Evolved from RiboDock, the program can be used against proteins and nucleic acids, is designed to be computationally very efficient and allows the user to incorporate additional constraints and information as a bias to guide docking. This article provides an overview of the program structure and features and compares rDock to two reference programs, AutoDock Vina (open source) and Schrödinger's Glide (commercial). In terms of computational speed for VS, rDock is faster than Vina and comparable to Glide. For binding mode prediction, rDock and Vina are superior to Glide. The VS performance of rDock is significantly better than Vina, but inferior to Glide for most systems unless pharmacophore constraints are used; in that case rDock and Glide are of equal performance. The program is released under the Lesser General Public License and is freely available for download, together with the manuals, example files and the complete test sets, at http://rdock.sourceforge.net/

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ZDOCK and RDOCK Performance in CAPRI Rounds

We present an evaluation of the results of our ZDOCK and RDOCK algorithms in Rounds 3, 4, and 5 of the protein docking challenge CAPRI. ZDOCK is a Fast Fourier Transform (FFT)based, initial-stage rigid-body docking algorithm, and RDOCK is an energy minimization algorithm for refining and reranking ZDOCK results. Of the 9 targets for which we submitted predictions, we attained at least acceptabl...

متن کامل

ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5.

We present an evaluation of the results of our ZDOCK and RDOCK algorithms in Rounds 3, 4, and 5 of the protein docking challenge CAPRI. ZDOCK is a Fast Fourier Transform (FFT)-based, initial-stage rigid-body docking algorithm, and RDOCK is an energy minimization algorithm for refining and reranking ZDOCK results. Of the 9 targets for which we submitted predictions, we attained at least acceptab...

متن کامل

Docking Studies of Phthalimide Pharmacophore as a Sodium Channel Blocker

  Objective(s): Recently, phthalimide derivatives were designed based on ameltolide and thalidomide as they possess a similar degree of anticonvulsant potency due to their phenytoin-like profile. The ability of phthalimide pharmacophore to interact with neuronal voltage-dependent sodium channels was studied in the batrachotoxin affinity assay. Therefore, in the present study, a series of 19 com...

متن کامل

TarFisDock: a web server for identifying drug targets with docking approach

TarFisDock is a web-based tool for automating the procedure of searching for small molecule-protein interactions over a large repertoire of protein structures. It offers PDTD (potential drug target database), a target database containing 698 protein structures covering 15 therapeutic areas and a reverse ligand-protein docking program. In contrast to conventional ligand-protein docking, reverse ...

متن کامل

Ligand-based pharmacophore modeling to identify plant-derived acetylcholinesterase inhibitor natural compounds in Alzheimer’s disease

Background: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by decreased cognitive function in patients due to forming Aβ peptides and neurofibrillary tangles (NFT) in the brain. Therefore, the need to develop new treatments can reduce this risk. Acetylcholinesterase is one of the targets used in the design of new drugs for the treatment of AD. The researchers obtain new i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014